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ABSTRACT

The techniques of ray—optics, which have provided meaningful results

in the study of electromagnetic and acoustic problems, are applied to the

integrated dielectric cylinder—cone configuration.

The method of geometrical optics is presented. The eiconal and

transport equations are derived. Asymptotic boundary conditions are dis-

cussed and a generalized reflection coefficient introduced. Before in-

vestigating the cylinder—cone non—separable geometry, an understanding

of the ray structure in both an infinite dielectric cylinder and, sepa-

rately, in an infinite dielectric cone is needed. This is accomplished

in the report and, consequently, amplitude and phase information is at-

tained. In addition, caustics are discussed. Caustics are envelopes of

the ray systems and, thus, are surfaces which separate propagating and

non—propagating (or complex evanescent) regions and characterize the

modal ray systems in non—uniform regions. The report concludes with a

discussion of the transition region between the cylinder and the cone.
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Fig. 1. Geometry and coordinates of dielectric cylinder

feeding dielectric cone. 42

Pig. 2. Cross—sectional view of ray trajectories and caustic

in the dielectric cylinder. Ray segment, phase and

direction are: ED, S2(—p ,+~,—z); DC, S1(+p,+ ,—z);

CB, S2(—p,+4,, z);  BA, S1(+p,-I~~,—z). Note that rays

progress in the negative z—direction. 43

Fig. 3. Ray trajectories in the dielectric cone prior to

reaching the spherical caustic. Ray segments , phase

and direction are: PP ,S12(—r ,—e ,+$); P0~
P1,Sjo

(—r,+O,+4); PiP
~~
, S12(—r ,—8,+~); P 1cP, S:o(—r,+O ,+~P),

etc. Points P0,PI,P2,P3,PII are on the dielectric

boundary; Points 
~~~~~ ~1~ ’~ zc ’~ 3c are tangent points

on the conical caustic. Dashed rays are hidden from

view. 44

Fig. 4. Ray trajectories in vicinity of spherical caustic.

Ray segments, phase and direction are: Q1Q19, S~~

(—r ,— 8, +$); 
~ :s~~i c’ S11(+r,—O ,+4); ~~

1
~~~

2’  S9(+r,+6,+~);

~
‘ic~~~s’ S~o (—r,+8,+4); Q~sQ~ Sg(+r,+O ,+$) ;

~~~~~~ 
S11(+r,—e ,+$); Q~~Q~ , S9(+r,+O,-f~); etc.

Points Qi,Qz,Q’ , Q’ are on the dielectric boundary;

points Q18 ,Q are on the spherical caustic and points
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~ic ’~~c’~~c 
are on the conical caustic. Dashed ray tra—

j ectories are hidden from view. 45

Fig. 5. Reflection and transmission of rays at a curved inter-

face between two dielectrics where n1,2 are refractive

indices. The unit vector v is normal to the plane of

incidence which is defined by the unit normal N and

the incident ray direction VS~. 46

Fig. 6. Geometry for determining ray tracing in the dielectric

cone. Point P is located at (r ,0 ,4 ) and P at

(r1,e ,q 1). The shaded portion id::tifies the caustic

regions. Note ~~ 
— — 8

0 .

o Pig. 7. Projection on to the base of the cone (i.e., on to the

• 

- 
termination of the cylinder) to determine the 4 varia—

tion of a ray as it progresses toward the conical tip

(a) a single reflection from the conical surface (b)

subsequent reflections from the conical surface. 48
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If the reflection coefficient is constant on the boundary U, it is

possible to construct an alternative formulation without destroying the

specular reflection condition (2.9). In this formulation, the phase of

r is incorporated into the phase function S rather than totally associated

with amplitude terms as was done in (2.10). Rewriting (2.7) in the form

ikS ikS i argr + ik S
A e q 

— A r e = A In e p
q p p ‘ (2.11)

with 1’ defined by (2.iOb ), leads naturally to the relations

A — A i n t ,  k S  = k S  + argr-2 mfl. (2.12)
q p q p

If , fur thermore ,iT J = 1, then arg r = —i Lu 1’ and (2.i2) reduces to

A~ = A
q 

(2.i3a)

k S  = k S  +iL n  ~~+ 2 ~Jt (2.13b)p q

where m is an integer. *

The solutions of eqs. (2.4) and (2.5), subject to appropriate boundary

conditions ((2.10), (2.12) or (2.13)] in a given structure, is the subject

of the next section. Before proceeding, it ought to be pointed out that

the scalar wave function ~P will be shown to be proportional to the longi-

tudinal component E
~ 

Lu the cylinder and to the radial component Er in the

cone.

_
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3. RAY OPTICAL SOLUTIONS FOR DIELECTRIC CYLINDER AND CONE

The ray equations developed in Section 2 are now applied first to the

infinite dielectric cylinder and then to the infinite dielectric cone. The

asymptotic solution to the wave equation for the cylinder is found by solv-

ing the eiconal and transport equations in cylindrical coordinates subject

to appropriate boundary conditions. A similar result is achieved for the

cone using spherical coordinates.

When solutions to the eiconal equation are real, directions VS~ describe

the modal—ray trajectories which satisfy the specular reflection law at

boundaries. However , when phase functions S (r) and VS become complex,

real space trajectories cannot be defined. Surfaces which separate regions

of space wherein the phase function S is either real or complex evanescent

are called caustics. It will shortly become evident that caustics play a

dominant role in the description of the ray structure in both the dielectric

cylinder and cone. From knowledge of these phase functions in both geo-

metries, reflection coefficients will be determined.

A. DIELECTRIC CYLINDER

a. Eiconal Equation 
-

Since the geometry of an inf inite dielectric guide is cylindr ical ,

cylindrical coordinates are used (see Fig. 1). Following the procedure

developed for two—dimensional configurations [2], the phase function of

an arbitrary ray guided by the cylinder is assumed to have the separable

form

S(p ,~ ,z) — R(p) + ‘t~($) + Z(z) (3.1)
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Applying (2.4) yields

R’2 + ~~~~~ + V2 = 1,

where the prime denotes differentiation with respect to the argument. Re-

arranging terms gives

~,‘2 = —p 2 (R’2 + z ’2 — 1). (3.2)

Setting both sides of the above equation equal to a constant ‘a’ yields

= a2

(3.2a)

1 — Z ’2 R’2 + a 2/p2

Equating both sides of the latter equation to a second separation constant

(or eigenvalue) ‘b ’ results in

— ± if- b2 (3.2b)

— ± ~~~~ 2 — a2/p2 (3.2c)

Integrating eqs . (3.2) is straightforward and gives, ignoring the addi—

tive integration constants for a moment,

‘~‘(~
) — ± a ~

Z(z) — ± ii — b 2 z — ± Z(z) (3.3)

1
R(p) — ±[(p2b2 — a2) — a cos (albp) ] — ± R(p )

Combining (3.3) with (3.1) and introducing a composite integration con-

stant explicitly, gives phase functions

—8—
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S(p,4o,z) — ± [(p2b2 — a2Y~ — a cos~~~(a/b p ) ]  ± a4 ± A — b 2 z + c (3.4)

Phase fronts S — constant progress along ray trajectories defined by the

unit vector

VS — ± — a2/p2 ± (alp) ± A — b2 (3.5)

where a1, I = p,~~,z,are unit vectors along the coordinate axes. From (2.4),

eight distinct phases are possible and are designated

S12  — ± R(p) + a4 — Z(z) + C 12

S3 4  = ± R(p) — a~ — Z(z) + C3 4
(3.6)

~
5,6 

— ± R(p) + a4o + Z(z) + C5 6

S78 — ± R(p) — a4 + Z(z) + C7 8

where R(p) and Z(z) are taken as the positive signed quantities in (3.3).

b. Reflection Coefficient

Observing that the p—direction is normal to a cylindrical surface and

assuming again that species p reflects into species q at the boundary

~cyi.’ ~~~~ 
establishes that

.
~~~~

— j
P
. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

It follows on using (2.lOb ) that

f 1(r) ,ffJ 2 ... (~~~~~2 _ 1

r — 

C)~ — 

at P — P~ 1 
(3.7)

cyl 
~cyl~~
) 42 — (.~ )2 + 1
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The boundary of a cylinder is characterized by a constant p—value.

Since the guide is rotationally symmetric and infinitely long, the para-

meter f (r) and therefore the reflection coefficient r are assumed tocyl — cyl

be independent of the 41-. and z—coordinates. A rigorous justification fol—

lows by referring to the exact modal solution presented in Section IV. If

it is also assumed that rays are totally reflected at the dielectric—air

interface, the absolute value of the reflection coeff icient is unity and

boundary conditions (2.13) apply. Thus, cylindr ical ray amplitudes are

not altered by reflection at the boundary (A~ — Aq 
from (2.13a)). Further—

more, since the rays obey the specular law of reflection and Snell’s law

of refraction, it follows , for example, that rays progressing in the

(+p ,+41 , +z)—direction will reflect off the boundary in the (—p, -f4 , +z)—

direction. In other words , ray specie S
1 will reflect into ray specie S2 ,

S
3 

into S4, S5 into S6, and S7 into S8. This reflection property of ray

pairs at the cylinder walls is needed for solving the transport equation.

c. Transport Equation

The complex amplitude of a ray is given by the solution of the trans—

port equation , eq. (2.5). Restricting our consideration for the moment

to ray species S
1 

and S2 in (3.6) and referring to (3.4) and (3.5), the

transport equation in cylindrical coordinates can be shown to take the

form

±2 ~~~2 — a2/p2~~
1
~
2 + 2 ~ ~~1,2 — 2 I[ b2 ~~1,2 ± b 2 

- 0

— a2 (3.8)

—10—
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where A
1 and A2 are the ray amplitudes associated with phases S

1 
and S2.

To solve (3.8) , a product separable form

A —

can be assumed . Since an incident ray specie S~ reflects off the dielectric—

air boundary into a ray specie 
~2’ boundary conditions (2.13) stipulate

that A
1 

— A
2 at ~~ 

— , where p
~~, 

is the radius of the dielectric guide.

Imposing the additional constraints that the f ield must be rotationally

symmetric with regard to 41 and must be bounded on the Infinite z—domain
• while recalling that amplitude (as well as phase) changes along a ray tra—

• jectory are real, it can be shown that the amplitudes A
1 

and A2 are inde-

pendent of 4, and z , Hence , (3.8) reduces to

~~i b2
2 h2 — a2 1p 2 

~~— + 
_______  

= 0, I — 1,2,
— a2

which has solutions I 
-

— Kcyl (2b 2p2 — 2a2Y’~, i — 1,2, (3.9)

where Kcyl is a constant . Eq. (3.9) has the expected variation which

is characteristic of cylindrical wave functions.

d. Caustics

Caustics are found by examining when real ray trajectories VS become

complex. Prom (3.5), trajectories are real when p > a/b and b < 1, i.e.,

p > a/b > a. If, however, either one of these conditions is violated ,

phase functions become complex and evanescent behavior results. Thus, in

—11— 
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a cylindrical waveguide , caustics are cylindrical surfaces of radii (see

Fig. 2). : 

-

~ca 
— a/b , b~ 1. (3.10)

Hence, for rays to propagate down a cylindrical guide of radius p~~, ‘

~
ca < 

~cy (3.11)

e. Boundary conditions

It has already been noted that the direction rays travel down the

guide is altered by reflection from the cylindrical boundary p — p
~ ,,
. In

particular (see Fig. 2), S1—rays, which proceed in the (+p , +41, —z)—direc—

tion , reflect at the boundary into S2—rays, which progress in the (—p , +41, —z)—

direction. Appropriate boundary conditions are prescribed in Eqs. (2.10),

(2.12), or (2.13). This surface, however , is not the only boundary which

affects the rays. All rays are tangent to caustics and upon traversing

them experience a phase lag of ninety degrees. Thus,

k S 1 k S 2 — II/2 at 
~~~~~ca (3.12)

Using the expression, for S
1 and S2 giv.n in (3.6) and applying (3.12)

gives

k (C2 — C
1) — 11/2 (3.13)

— —— —— ~~~~~~~~~ 
-

~~~ 

1.

1: 

_

~~~~~~~~

_

~ 
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after noting that R(p
~5
) is zero. Letting C

1 
= —C2, as is done in [2] , re-

sults in

k C
1 — — k C2 — — U / 4  (3.14)

Combining (3.14) with S1 and in (3.6) gives

S1 
= R(P) + a41 — Z(z) — 11/4k

(3.15)

S2 —R(p) + a41 — Z(z) + 11/4k

A A

where R and Z are defined in (3.3).

Since the field structure must be rotationally invariant, the

phase must satisfy the condition

S(p,41,z) — S(p,41 + 21[,z)

The phase dependence exp (±ika41) then requires that

ka — n , n = integer (3.16)

Application of (2.13), with S12  defined in (3.15), C1 2  related by (3.13),

and ka — ii, , yields the asymptotic modal equation for the eigenvalue b — bmu

2 k R (p ) — (2m + ½)It + I ml ’ , (3.17)

where

kR (p ) 
— /(kb p ) 2 — n2 — n cos

1 
(n/kb P )mu cy mu cy mu cy

—13— 
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f.  The Mode Function

Modal fields in the cylindrical waveguide , which propagate in the

(—z, +41)—direction, can now be constructed by the superposition of the

S
1 

and S
2 

by

ikS ikS2
~ A1 

e 1 + A2 e (3.19)

The phase functions S1 2  are prescribed in (3.15) with elgenvalues a and b

stipulated by (3.16) and (3.17). The amplitudes A12  have been shown to

be equal and to be functions only of p in (3.9). Thus, modal ray f ields

• are

‘V — 

Kcyl cos (k /p2b2 — a2 — ka cos ’(_!_) — 11/4]mu (2b 2p2 — 2a2)~ 
bp

i (ka41 — k(1 — b2)½ z]
(3.20)

where K is a constant.cyl

B. CONE

a. Eiconal Equation

Pi8. 2 shows the dielectric cone with the appropriate spherical geo-

metry. It is assumed that the phase is separable and has the form

S(r ,9,41) — R
~
(r) + (6) + (3.21)

~ I In spherical coordinates, the eiconal equation (2.4) becomes

I
—14—
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[R~
2 
+ 

1 
®~

2 
—l][—r

2 
sin

2 e] —

— Each side of the above equation is set equal to a separation parameter ,

called a~, so that

— 
‘ ~~~~~~ 

= ± 41 (3.22)

and

[-r
2
][R’

2 
- 1] - ~~~~~ + ®?

2 
.

A second separation constant, b~ , is introduced such that

-

. 

[-r
2
)[R’

2 
- - iJ — b

2 and 
~~~~ 

+ = b~ .

- The first equation reduces to

I R ( -
~)- ±f~ 

- (~~)
2 dr - ±[J~

2 
- b~ 

- b cos~~ [ f)] (3.23)

- 
while the second reduces to the more complicated integral

—15—
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a2
__)½ dO 

af~~~ 

sin2 0 - l) ½ 
dO

sin e sin e

= a r~2 1’ sin 8 dO 
- r dO 1

c L cJ [c2 sin2 e — ~j½ e [c~ sin
2 e — ij½J

where C = b / a . Tc c c

The latter two Integrals were found in Gradshteyn and Ryzhik [6]

and subsequently evaluated with the result that

r b cos O 1
® (6) — ± I a tan 1 COS 6 

— b sin 1 c I (3.24)
L c /(b

2/a2)sin2G — 1 ,~2 — a
2 J

Combining (3.22), (3.23) and (3.24) wIth (3.21) expresses the phases

of the conical rays as

A

S(r ,6,41) — ± ~~(r) ± (~ij  (8) ± aè+C , (3.25)

where C represents a composite integration constant,

— /r2 
— b

2 
— b

~ 
cos~~( 

—
~~~ ) (3.26a)

—16—
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—

b cos O® (0) = a tan i( ~~~ 

~~~~~~~~~~~ ~~ — 

) — b Sin
_i 

~ 
— 

a~ 

) (3.26b)

and modal—ray trajectories are described by

~~~~~~~ ± A.’ -. (~.2)2~~ ~1~~
’
~— ~~ 

~)2~~~ ± r j
C 

~ 
(3 27)

Eq. (3.27) can readily be shown to satisfy the eicona]. equation (2.4).

As in the cylinder, there are eight ray species in the cone which are

defined by the phase functions

S9 10 = ± + (0) +a41 + C9,10

S11 12 — ± I~(r) 
— ® (e) +a

c41 
+ c11,12

(3.28)

S13 14 - ± I~(r) + (0) — a
0$ + C~3 1~

S15 16 ± — ® (6) — a
~41 

+ C15,16

A
- 

- where R and are defined in (3.26).

—17— 
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b . Reflection Coefficient

Assuming a ray species p reflects into a species q, eq. (3.27)

shows that the normal derivative of the phase S~, at a conical surface,

3S a
~~~~~~~ .v s = 1 ~~2 ( C

)
2

~v —6 r c sin G

depends on both r— and 0—coordinates. Thus, as defined in (2.lOb)

with f (r), the reflection coefficient,

f (r) i ~~2 
~ 

C
co— r c sin 0

rcone = 
/ a 

— at 0 = 

~~ 
(3.29)

f (r) i ~~2 ( C )2~~~~ -

co— r c sin G

unlike the cylinder reflection coefficient (3.7), is not constant on

the boundary of the dielectric cone (which is described by 0 —

constant). Thus, asymptotic boundary conditions are not applicable.

Note, however , that symmetry implies that the surface impedance and

therefore the reflection coefficient are independent of the 41—
coordinate. This implies that ray amplitudes might also not vary

with 41, a conjecture which proves fruitful in the fo1L~wing analysis

of the transport equation.

—18— 
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c. Transport Equation

In the spherical coordinate system , the transport equation

(2.5) involves the gradient

A l~~A A  1 ~A ~‘VA = 
~~ ~r + + r sin e ~

and the scalar Laplacian

I,

2 1 ~ 2~~ S 1 . ~S 1 .L ~~.V S — ~- — ( r  — ) +  2 — (sin8—) + 2 2
r ar ar r sin 0 ~0 ~O r sin 0 341

For the cone configuration (Fig. 3), rays progressing toward the

boundary 6 = 8~~in the (—r, +0 , +41) dlirectiqn reflect into rays

progressing in the (—r, —0 , +41)—direction. These ray families are

represented in (3.28) by phase functions S10 
and S12, respectively.

The associated ray paths are described by

VS10 12 — — ~~~~~~~ ( . ) 2 
i.r ± — ~~~~~~~ ~~ + r sinO ~~ (3.30)

The transport equation governing the amplitude behavior A10 and A12

correspond ing to phases S10 and S12. respectively , become on assuming

no variation with 41 because of rotational synnnetry

— ‘9— 
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2r2 - ~~~) 2 3A~ 
2 ~~~~~~~ sin

2
O - a

2 
~~ 

+ 
2r2- b2 b

2 
cos 

lA
sin 6 ae 

,42 b2 Ib2 sin2O — a2j

= 0 , - (3.31)

where A = A10 and A A12 correspond to the upper and lower signs,

respectively.

To solve (3.31), the amplitudes are assumed to have the product

• separable form 
- -

_

= ~ (r) ®~°~ - 
(3.32)

Substitution of (~ .32) into (3.31) and 
introducing the separation

constant yield the differential equations

— 12r 2 - b 2 + a  A~-~~i
C C 

C 1 ~~~~~~ 0 (3.34)
*1 L 2r (r — b )  J

and

,~~ cos 0 ± ~ ?~
2 
sin28 — a2] sin 0c c c c

dO 2 2 2 ‘
2 (b s i n 6— a )c c

—20—
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where again the upper and lower signs correspond to A10 and A12,

respectively. Integrating and combining yields

- K
A — ~(r)j (0) = 

CO (3.36)
c L 2 2  — b

2) ((b
csin0/a~)

2_1]J¼

with

ct~~~ o

and constant K . The condition a = 0 results on requiring the
• Co C

modal field solutions, and therefore the amplitudes, to be unique; a

direct integration of (3.34) yields a multiplicative factor

exp [— (a /2 b )  seC~~ (r/b )J which is mu].tivalued due to the presence

of the secant function and thus requires 
~~ 

= 0 for uniqueness.

Observe that cone ray amplitudes have the familiar r 1 variation which

4 appears in spherical wave functions .

d. Caustics

Caustic surfaces are determined from (3.27). It is clear that

solutions are real for sin 0 
~ 

r ~~ , b~ 
and imaginary when either

of these conditions is violated . There are therefore two caustics ,

a sphere

r — b (3.37a)

—21—
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e. Boundary Conditions

It has been observed that rays incident on the conical boundary

(0 in the (—r , +0, +41)—direction are characterized by the phase

and reflect into the (—r , —0, +41)—direction associated with the phase

S12 (see Fig. 3). Boundary condition (2.8) is therefore satisfied and

specifies that

k S10 — k S12 + 2infl at 6 = (3.39)

Boundary condition (2.13), which is used to study the reflection of rays

from the cylindrical boundary, cannot be used f or conical rays because

the reflection coefficient (3.29) is not constant at 0 = 0Co

Fig. 3 also depicts an S12—ray progressing toward the conical caustic

(6 = with an S10—ray leaving from a common tangent point. As was

noted in (3.12), for rays tangent to a cylindrical caustic, S10 and S12
at the conical caustic experience a ninety—degree phase change stipulated

by

k S10 — k S12 — at 6 — 6 (3.40)

While this formulation was complete in the cylinder, it is not in

the cone. The spherical caustic r — b
~ 

serves as a reflecting boundary.

We then are forced to consider rays travelling toward the tip, in one

polarization, which bounce off ~he spherical caustic. A look at Fig.

4 indicates that rays incident in the (—r , —8, +41)—direction will be re-

flected from the spherical caustic in the (+r , —0, +41)—direction. Thus,

at the spherical caustic, we have the following conditions (see (3.21)):

—23— 
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C k S
9 — k S 10 —~~

at r b  (3.41)

k S 11 = k S 12 —~~ 

C

Furthermore, S9— and S11—rays couple at both the boundary and conical caustic

(see Fig. 4) so that

k S 9 = k S 11 —~~ at O O a 
(3.42)

k S11 = k S
9 

+ 2m11 at 9 = (3 43)

f .  Tangent Electric Field on Conical Surface

Determining the asymptotic expression for the modal field in the cone

is more difficult than for the cylinder. This is largely due to the fact

that the boundary condition required is (2.8) rather than (2.13b). If we

consider rays propagating in the (—z, +41)—direction only, then the ray

solution to the scalar wave equation in the cone takes the form

ikS 0 ikS 2
‘Y(r) ~ ‘ A10e 

1 
+ A12e 

1 (3 44)

where A10 and A12 are specified by (3.36) with different constants and the

phase functions S10 and are given in (3.28). Instead of determining

the modal field at arbitrary points in the dielectric cone, we will derive

expressions for the tangent electric field at various points on its sur-

face. This field is important because tangent fields are needed to formu-

late an integral expression for the far field. The tangential magnetic

field follows in a similar fashion, but will not be discussed.

It is necessary at this point to relate the scalar wave function ‘V

- _
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given by (3.44) to the electromagnetic field. In a spherical coordinate

system, the solution to Maxwell’s source—free equations can be expressed
A A

in terms of two potential functions, A = rA and F = rF. The associated

wave functioim? = A/r and = F/r satisfy the reduced wave equation and

field components are given by [5].

E = —VxF — (1/1~c)VxVxA (3.45a)
and

H — VxA - (1/ 1~ .i)VxVxF (3.45b)

Noting that ‘V
a 
and satisfy the same wave equation, i.e. (2.1), we

may write C’Y~ , where C is an arbitrary constant. For convenience,

let incident and reflected wave functions be defined in terms of ray species

S10 and S12, respectively

i ikS
‘V1 E Aiell

~ = ‘V io A10e 
10 - (3.46a)

r ikS
= 

~~~~~ — ‘V12 A12e 
12 

(3.46b)

It follows that in spherical coord inates, the electric field components

associated with these wave functions can be expressed, to order k, by

E~0e
1’
~ 

— —i~kr [(3S
P/3r) 2 1] A~e

1 
(3.47a)

E~ = E ~~e
i1C5 

~~~~~~ 
~~~~ 

(3.47b)

E~~e —- ink C 
sinO A~e (3.47c)

where k and fl are the wavenumber and intrinsic wave impedance of the dielec— -

tric cone and superscript p — i or r for incident or reflected field corn—

ponents, respectively.
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The tangent electric field on the conical surface is expressed in terms

of the asymptotic vector amplitudes E
i
~
t by

— x (F1 x i) 
~~~~ ~c ~~~~~~~ 

e1’~ + 
~! 

x ~~~~~) 
eikS

r
, (3.48)

where the outward directed surface normal N = 8. Following the develop-

ment of Lewis and Keller [7], the amplitudes ~~,r are related to components

both parallel and normal to the plane of incidence,* defined by the unit

vectors VS~ and N via the relations-

— 
i,r + El,r (3.49)

with 

r A A 
~~ 

A

VS x N — VS x N = (n1sin w) V , 
~~ 

,r 
= v x VS ,r, (3.50) 

- 
-

The scalar amplitude - components E
l,r and E~,r and their associated unit

vectors ~l,r and V are parallel and perpendicular to the plane of incidence,

respectively. The index of refraction n
1 

describes the dielectric material

of the cone and w is the angle o~ incidence defined in Fig. 5.

Using the expressions [7]

A 

~ 

A A A

N x E ~~ ’ E cos w V + E ~~N x V  (3.51a)— —o p — n —  —
and

N x E~~ 
=_ E

T cos w V + Er N x V (3.5th)

the tangent electric field (3.48) becomes

*~~~ can be shown that E ’ .7S~ ’~ - 0 provided r ‘>

—26—
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B (Eieil~ — E’e~~
8 ) V cos w — (E1e~

1
~ + Ere~~

S ) V x N—tan p p — n n — —
(3.52)

1. A single reflection from the conical air—dielectric interface

As the rays progress in the conical radiator toward the tip, their am-

plitudes are altered by Fresnel polarization dependent reflection coeff 1—

cients [7]

r - E
r/El , r - E

r,Ei at 6 = 0 , (3.53)p p p n =  n n co

which for — 

~
‘2 

= are given by

— sin2w—cos w ~ 2 2 (3.54a)
,1 C _,. , i r —  r sin w — c o s wr~ 

~~~~~~~_~~
_ 
— sin2w+ cos 

rn 
/E — 

2 
~~j~~

2 w + cos (3.54b)
C r r

— In addition, the incident and reflected phase terms satisfy the relation

kS~ — kSt + 2mfl , 6 = 0 (3.55)

Applying boundary conditions (3.53) and (3.55) to (3.52), while consider—

ing surface points at which only one reflection takes place , yields

~tan 
— (E~ (1 — r~) V cos w — E~ (1 + r ) V x N] e~~~ (3.56)

For (3.56) to be useful, relationships between the scalar ampiitudes E~ ,

and spherical components E~0, E~~, E~0 
in (3.47) must be established

f rom (3.51a)

N x E i I’._E
i
~~~~+ E 1 r _ E i c o s w V + E i

N x V  (3.57)
— —o to 410— p — n — —

Using the definition of V in (3.50), and noting that VS~ 7S,0 is given

—27—
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in (3.30), the vector V in spherical components becomes

V — [— (ac/r sin 0) r + (1 — b2c /r2)½ 41]/n1 
sin w (v r + v41 •]/sin w

(3.58)

Recalling that N = 0, it then follows from (3.58) that (3.57) yields the

expressions

E~ = (v41E~ + y E 1 ) I sin w (3.59a)

and

E~ — (V Et — v41E
1 ) / sin w cos w (3.59b)

Thus, the tangential electric field on the conical surface 8 = 0~~ ’ allow-

ing for one reflection, is prescribed by (3.56) with unit vector !~ 
Fresnel

reflection coefficients and amplitude terms specified by (3.58), (3.53)

and (3.59), respectively.

2. Multiple reflections from the conical air—dielectric boundary

As rays travel in the conical structure , they experience multiple re—

flections from the conical boundary. Each reflection introduces two angu—

larly dependent Fresnel reflection coefficients (see (3.53)). The

tangent electric field can be obtained at successive reflection points along

the conical air—dielectric boundary by tracking a ray as it travels toward

the apex of the cone (see Fig. 3) and introducing these two reflection

coefficients each time the ray strikes the boundary.

Consider an observation point P
1 

(r 1, 8co’ $~
) on the boundary 8 —

as depicted in Fig. 3 and Fig. 6. For incidence angle w1, it follows from

(3.53) that

—28— 
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E
1 

— r~ 1
E~ 1 , - rniE~i (3.60)

At a second reflection point P
2 

(r~ , ~~~ ~~ 
and for an angle of incidence

w2, E
r
1 

and Er
1 

become E~2 and E~2 , respectively. Therefore, (3.53) and

(3.60) specify that

E 2 — ~~~~~ — rp1rp2E~1 E~2 rn2En~ 
= r~,r~2E~1 (3.61)

By continuing the process of tracking reflections, we get at P
2.

(r
R.,6~O~

41Q) and
for — V

2 
a series representation of the form

2.—i
— r r ... r E~~ = it r E

1 (3.61a)p,i pl p2 p,9.—l pl p , m p
r n 1

i i 2—i
B — r r ... r E ~ it r E~~ 

(3.61b)n,9.. nl n2 p,L— l ni n,m n
r n 1

where

rp, m = rp (wm) and rn,m 
= rn(wm) (3.61c)

The incidence angles w
m 
are ‘determined by tracking a ray as it travels

- ‘ in the conical radiator. Consider the construction in Fig. 6. Observe

-that the ray directions from P0 to P0~ 
is given by VS12 and from P~~ to

P
1 by which for convenience is repeated as follows

VS 10 — —(1 — (bc/r)2)
½ r ± (1/r)(b~

2 — (ac/sin8)2)
½ 8 + (a

~
/r sinO) ~

12 
(3.62)

The angle 00 in Fig. 6 is found by taking the dot product of VS1~ and r ,

and evaluating it at the point P0
(r
0,e~0

,410
);

cos 8
0 

— 

~~12 ( t )  — (1 — (bc/ r ) 2)½ (3.63)

-29— 

—- - - -~~ — - - ~~~~~~
— - --—

~~~~~~
--— -—---- ----—--—— U



From geometrical construction in Fig. 6,

8 = 8  +26 (3.64)1 0 CO

= b
~

/sin6
1 

(3.65)

Since the angle of incidence w
1 
is defined as the angle between the ray

direction VS10 and the unit normal N = e at (r 1, °co’41i~
’

cos w
1 

— VS10.e — (l i t 1) (b
~
2 — (ac/sin 6)

2)½ (3.66)

Using a~ = b
~ 

sin 8ca’ (3.64) and (3.65), the above equation reduces to

cos w1 = sin(90 + 2 6 )  (1 — (sin 8 /sin8 )2)½ (3.67)

which specif ies w in terms of the known parameters 8 , 0 and 6 . Fol—
1 co ca 0

lowing the above procedure, it becomes evident that the incident angle w
9.

associated with a ray reaching the conical wall at the point P
9. 
after under-

going 9. reflections is given by the similar expression

cos w
2. 

sin8
9. 

(1 — (sin 
~~~~~~ 

9 ) 2)~ (3.68)

with

89. 
— 0~ + 29.8co (3.68a)

and 0~ specified by (3.63). In Section 4, continuity of the field at the

transition region will be applied and relationships for the conicsl eigen—

values (a
~
,b
~
) will be found in terms of physical parameters.

Thus, after 2. reflections from the conical air—dielectric interface,

the surface tangential electric field at the point P
9. 

(r 9., 8~~, 41~
) can be
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inferred from (3.56) and by using (3.61) to be

2.—i 2.—i
- 4 A 4 A A it.c~

1
- E —[ (cos w )E ( i— r  ) it r V — E  (1+r ) Ti r V xO] e 2.
- —tan,2. 2. p p,2 p ,m — &  n n,2 n,2.—9. —

- r n 1  m”l

(3.69)

- where V
2 

= V(r 2, ~~~~~~ w
2.
) is specified by (3.58), w9. 

by (3.68) and S~ by

S10 in (3.28) evaluated at r9., 0~~ , 41~. The 41—variation experienced by a

ray as it proceeds toward the tip is illustrated in Fig. 7a and 7b.
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4. COMPARISON OF RAY OPTICAL SOLUTION WITH EXACT MODAL SOLUTION

IN THE CYLINDER

The expression for the guided modes of an infinite dielectric cylinder

are well known [8]. The longitudinal electric field component, assuming

propagation in the z—direction and suppressing the exp(—Jwt) time depend-

ence, is given within the cylinder (p < p~~~) by

in41 — i /k2 — k2
~ 

z
Ez — A 3 (k

~ 
p) e (4.1)

- 
- 

Allowable eigenva].ues k
t 
are prescribed by a rather complicated eigenvalue

equation, which can be found in [8].

-

‘ 
The Bessel function in (4.1) can be expressed in terms of the Hankel

functions of the first and second kind of order n by

~
(1) (k P) + H~

2
~ (k P)

3 (k p) t n t (4.2)n t

When k
~ 

p + , the Hankel functions can be approximated by the (Debye)

asymptotic forms

a

~~~~ 
(k
~ 
0) -/~~ 

(~
2 

- a~)~~ e 
~~ 

~(p 2 
- a~~~ - a~ cos~

’ (-i)) - i

t (4.3)

(k
~ 
p) -/~ (p 2 

- a~)~~ e 
_ik

~ [ (p 2 
- a~~~ - a~ cos~~ c+] + i

where we have set : — k
~
ai. It should be pointed out that (4.3) are reason—

ably strong asymptotic expressions for Hankel functions in the sense that

- 
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they are not restricted to exceptionally large values of kt p but also apply

to moderate values. Using (4.2) and (4.3) in (4.1), the asymptotic of the

full wave solution becomes

ik
t a141 

- i /k~~ 
— k~ z ik

t ~~~
(p) - i

~ 
-ik

e ~~~
(p) + i~je ~e

(4.4)

where

- 

~~~~~~~ (p 2 - ~~~~ 
(4.4a)

and

‘
~ ~ 

- (p2 - a~~~ - a~ ~05_i(~~~
) 

(4 .4b)

Since we are interested in the HE11 mode , a = 1 or k
~
a
1 

= 1. Hence,

a
1 —~~-- (4.5)

We now return to the ray—optic results. The scalar wave function

given asymptotically by (3.20) is related to the electric field E
~ 

via [5]

B2 
— 1l4/(—iwC)1 ‘V (4.6)

Hence,

- _____________ 
ika41 — i k /1 - b2 z (k R(p) +

E (r)~~ e te
2 — (2 b2p2 — 2 a2 ].’~ .. .

~ 

L

—i (k R(p) +

J (4.7)

where

Keyl — K l 
k~ I (—Jwc) (4.7a)
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and

R(p ) — /p
2b2 — a2 — a —

i (a) (4.7b)

A comparison can be first made between the phase factors in (4.4) and

(4.7). From the 41 dependence, k~ai = ka = 1; hence,

~~~~~ (4.8)

From the z dependence,

/ k
k / 1_ b 2 =/ k 2 _ k ~~~= k / 1 _ ( ~~) 2

and therefore

k
b = - j~- (4.9) —

If this ray solution is correct, the r- dependence must also agree. Thus, -

from (4.4) and (4.7)

k
~ 
R~~(p) = kQ ~(p). (4.10)

From (4.4b) and (4.5)

k~ R~~
(p) — /P

2k~ - 1 - ~~~_1[~~_] (4.11)

• From (4.7b), (4.8) and (4.9), it follows that (4.10) is satisfied. Thus,

the phase of the asymptotic of the full wave solution and the ray—optic

solution are identical.

In matching the amplitudes, we note, using (4.5), that the asymptotic

form of the amplitude of the full wave solution in (4.4a) takes the form

= A/i(p2 k - iY~ (4.12)

- --- —~~~------- 
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Using (4.8) and (4.9), (4.12) reduces to

= A A (2 p2b2 — 2 a 2 )~~~~ 2¼ (4.13)

Comparison of (4.13) with amplitude terms of the ray solution (4.7) corn—

pletes the identification. Since all fields in the guide can be expressed

in terms of E2, all asymptotic forms of field components of the exact modal

solution in the cylindrical guide agree with their ray—optical counter-

parts.

Because of the above comparison, physical parameters are now associated

with the separation constants a and b first introduced in (3.2). From

(4.8) and (4.9) it evolved that a = 1/k and b = k
s/k, where

= k2 + k2 — c ce.. For propagation in all directions, k >

t z 0 0

hence, b = k
t/k < 1, which agrees with (3.10). In addition, real ray solu-

tions have been shown to be confined to the region (see (3.10) and (3.11))

a 1
> 

~ca = S = ‘

~~ (4.14)

The asymptotic expression (4.4) also predicts propagation in this region. 

~~~~~~ 
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5. TRANSITION REGION

As shown in Fig. 1, the transition region is defined as the region

where the cylinder ends and the cone begins. It shall be assumed that the

apex angle 8co is small so that diffraction effects caused by this 
disconti—

nuity in surface geometry can be ignored. The field across the transition

must nonetheless be continuous. This means that the asymptotic field

i.e., the rays must also be continuous; cylindrical rays must convert to

conical rays on crossing the interface r = r , 0 < 0 < 0 . To satisfy
T ca— — Co

these conditions and to understand the wave phenomena involved, the ray

direction in the cylinder, VS will be equated to the ray direction in the

cone in the limit of small e . This will yield solutions for the conical

eigenvalues (a , b )  in terin:of cylindrical elgenvalues (a, b). Further

~~ checks on the continuity of rays across the transition region follow by

investigating the continuity of reflection coefficients, caustics and the

fields.

A. CONTINUITY OF RAY PATHS

We first notice from (3.4) and (3.25), that the 41 dependence of the phase

function in both the cylinder and cone are identical. Thus, we anticipate

that

a a  (5.1)

We now turn to VS in the cylinder (3.5) and in the cone (3.27). We

propose to express the conical result in cylindrical coordinates by noting
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the simple geometric identities

A A A

a — a  c o s 0— a  sin O—z —r —e
(5.2)

A A A

a a  si nØ + a  cos e—p —r —e

Since 0 is very small, cos 0 >> sin 0, and we approximate (5.2) by

F Hence, (3.27) becomes

VS / c 2 
+ . - 

s::e 
ip 

+ 
r
T
:in e!41 

(5.4)

Equation (5.4) is now compared with (3.5); equating coefficients
A

of and noting that = rT 
sin 8 gives ac = a, which confirms (5.1).

Matching ~~ terms yields

bc 
— br

T 
(5~5)

Using (5.1) and (5.5) in the term of (5.4) agrees with the corresponding

a term of (3.5), insuring continuity of ray paths. 
-

- 
- 

B. REFLECTION COEFFICIENT

— 

At surface transition points (rT~ ~~~ 
0 < 41 < 211), reflection coef—

ficients in the cylinder and cone must be approximately equal so that con—

4 tinuity of the ray fields is maintained. From (5.1) and (5.5), the reflec—

tion coefficient for the cone rays (3.29) becomes

—3 7—  
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• 1

r ~co ~~~ 
- (ai Pcy )

2 1 
(5.6)

~~° 

~~~~~~~ 
~~~~~~~~ 

,42 .... (a/Pcy )
2~~~ 1

which agrees with (3.7) provided

— 

~~~~ 
at r — rT, e — 

~~~~~~ 
0 < 41 < 211 (5.7)

C. CAUSTICS

We begin with an examination of the spherical caustic in the cone

r — b r . The radius of this caustic is related to r according toc ca T —

(5.5), hence ,

r - brT (5.8)

The parameter b is related to vavenumbers k and k
~ 
by (4.9).

We must now verify that the radius of the conical caustic at (r
~
,O
~0
) equals

the constant radius of the cylindrical caustic given by (4.14). tIe note

F from (3.31b ) that the conical caustic is -given --by

ac a 1sin 0 ca b brT rTk~

where use was made of (4.8) and (4.9), (5.1) and (5.5). Thus,

I
rT sin 9ca — (5.9)

From (4.14),

- 
- 

~ca — at the transition region (5.10)

Thus, the caustics connect continuously across the transition region

—38— 



_ _  _--

D. FIELD CONTINUITY

Since the tangent field on the conical surface was formulated in (3.69),

a convenient way of insuring field continuity across the transition region

is to match f ield components at the surface point (r T, ~~~~ 
The tangent

electric field at this point is given by (3.56) which has two field corn—

ponents Er 
E ECO and B41 — E~°. Hence, we can insist that at (rT, 

~~~

— E~
’ = E~° , ~~~ = E ° (5.lia)

and, similarly, that

— H~° , H~
’ — H~° (5.ilb)

The superscripts clearly designate the field component as being associated

with the cylinder or the cone. From geometrical considerations, we note

that at (r , 0 )T co

ECY — ECY co~ e + ~~~ sin 0 , HCY 
= ~~~ cos 8 + HcY sin e

r z co p co r z co p co

(5.i2)

In Section 4 we have compared the asymptotic form of the exact solu-

tion for the electric field E2 ECY in the infinite dielectric cylinder with

the ray optical solution (see ~~s. (4.4) and (4.7)). The remaining field

components follow from the expressions (8]

1 ~E wu ~H i  rk 3E
E
C’

~ = .~~~~ l k - ~ z ~cy - _.::i .~!. .—~. + ~~~~~

k2 L 
2 ~ 0 • k2 ~‘. ~~ °

t t
— -. ‘k ~H ~E 

- (5.i3a)

HC 7 -
~ 

k
~~
3”z + w€ !~i

t , H ’
~ ’-~~ ~~~~~~~~~~~~ .5~!)

k t (5.13b)

where the phas. factor exp (—ik2z ) ,  k2 — (k2 
— k2)½, has been suppressed
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and H2 is proportional to E2, i.e., H2 — A0E2 where A0 is known from con—

tinuity of the tangent fields across the cylinder air—dielectric inter-

face [8]. Hence, since the field associated with the cylindrical waveguide

is known to within a single constant, then by setting the constant A in

(4.1) to unity and applying continuity of the tangent electric field (5.lia)

at (rT,0 0) ,  the unknown constant A” and phase constant C” in (3.46) or

(3. 47) can be found numerically. Continuity of the tangential magnetic

field given by (5.llb) would then have to be checked.
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6. SUMMARY AND SUGGESTIONS

The modal ray structure in a dielectric cylinder has been presented.

Its validity was substantiated by a comparison of the longitudinal electric

field component derived ray—optically with the asymptotic form of the exact

modal solution. Ray species, trajectories, caustics as well as phase and

amplitude variation of rays were all adequately explained. We next exam-

ined a dielectric conical structure and ascertained the ray description.

The cylindrical caustic in the cylinder was seen to evolve continuously

into a conical caustic in the cone. A spherical caustic was found centered

at the cone’s tip. Skew rays were carefully tracked in the cone and the

surface tangential electric field was found asymptotically in terms of

Fresnel polarization dependent reflection coefficients. Finally, a proce—

dure was outlined for establishing field continuity across the transition

region between the cylinder and the cone.

The above ray—optical treatment of the wave guidance of the integrated

cylinder—cone structure is to be considered a first step in understanding

the wave processes taking place. The next step, in analogy with our treat—

meat of the dielectric slab waveguide—wedge antenna - (4], is to formulate an

integral representation for the surface field which asymptotically reduces

to the above ray optical result in the transition region. A surface late—

gration of this field will, then enable us to find the radiation pattern of

the cone.
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